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ABSTRACT 

A range of extensions to the HNA method are made in this paper. HNA methods for 
convex polygons use an approximation space on two overlapping meshes, here we use HNA 
on a single mesh. This single-mesh approach is easier to implement, and we prove that the 
frequency-dependence of the size of the approximation space is the same as for the 
overlapping mesh. We generalise HNA theory to provide a priori error estimates for a broader 
range of incident fields than just the plane wave, including point sources, beam sources, and 
Herglotz-type incidence. We also extend the HNA ansatz to include multiple obstacles. 

In addition to the development of HNA methods, we also consider other ideas and 
developments related to multiple scattering problems. This includes the first (to the best 
knowledge of the author) mesh and frequency explicit condition for wellposedness of 
Galerkin BEM for multiple scattering. 

 

INTRODUCTION: 

To date, every version of the HNA technique has been developed for finding 
issues of plane wave incidence (as in Figure 1.2(a)). However, root incidence (see 
Definition 1.6(i) and Figure 1.2(c)) additionally happens oft in sensible applications. for 
instance, in acoustic modelling, most sounds originate from a supply point; a plane wave 
model is just applicable once the supply is much far from the scattering obstacle (a plane 
wave is also taken as a degree supply at infinity).  

Moreover, a degree supply is a lot of physically realistic (than a plane wave) 
because it satisfies the radiation condition. maybe less ordinarily studied could be a 
generalisation of the purpose supply; the beam source (see Definition 1.6(ii), and Figure 
1.2(d)), that the purpose supply is unclean on a line. Our interest within the beam supply 
is just part actuated by direct application; we tend to expect it'll even be helpful for 
repetitious multiple scattering versions of HNA BEM, that area unit mentioned concisely. 



Generalisation of Eventturfsdecipherable Through HNA Process… K.Rekha et al., 

 

 

2 

 

we tend to are fascinated by scattering by a general Herglotz-type incident field and 
Figure 1.2(b) for Associate in Nursing example with Herglotz kernel). like the beam 
supply incidence, solutions to such issues might not have as several immediate 
applications.  

Instead, our motivation is nested within a bigger plan for finding multiple 
scattering issues. The Tmatrom technique of needs Associate in Nursing approximation of 
the far-field pattern of diverging wave functions, that the Herglotz kernel are often 
written. therefore it's necessary to grasp such issues to develop HNA ways that area unit 
compatible with the Tmatrom technique. 

 

TO GENERALISE HNA METHODS TO A BROADER CLASS OF OBSTACLES: 

 

In this paper, we aim to generalise HNA methods to a broader class of obstacles, 
though controlling our attention to the case of the convex polygon Ω−. For each new x 

Uj 

 

  Γ+jΓj+Γ−jR2 \ Ujx˜j 

Figure 1.1: Example of a emblematic extension of a single side Γj, and the image of x אUjreplicated in the inestimable line Γ∞
j= Γ−

j ∪Γj∪Γ+
j, to create the point x˜jאR

2 
\ 

Uj.problem considered, we will derive a boundary illustration analogous to  using a half-
plane formulation, extending a single side Γj(of the boundary Γ of the convex polygon 
Ω−) substantially in both directions to form the boundary of the half-plane (see Figure 1.6 
for example of an extension of a typical side). Considering a single side Γjof a convex 
polygon Γ, 1 ≤ j ≤ nΓ, we define Γ+

jand Γ−
j as the infinite extensions of Γjin the clockwise 

and anti-clockwise directions. Denote by Ujthe (open) upper-half plane relative to Γ∞
j:= 

Γ+
j∪Γj∪ Γ−

j , such that the unit normal njpoints into Uj. Finally, we define x
jto be the 

reflection of x across Γj. Formally, x = x
jwhen x אΓj, otherwise xej=6 x satisfies 

dist(x,Γ∞
j) = dist(xej

,Γj
∞) = 12|x − xej| (see Figuree1.1 for a visual example ). 

We will make manifold uses of the following illustration from whichstates that for v אC
2(Uj) ∩ C(Uj) sustaining the Helmholtz equation (1.3) and the radiation condition, we 

have 

 , x in Uj. (1.1) 

 

We note that this illustration holds for v = us (the scattered field constituent of the 
solution to  and holds for plane waves proliferating in direction d, provided that d ·  nj≥ 0, 
i.e. proliferating out of Uj. Our illustration for the Neumann trace of the solution to (1.4)–
(1.6) will characteristically be of 
the form 

∂u∂n,xinΓj.
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     (1.2) 
This 

leads to 
the 

boundar
y representation (2.2), since 

2 

 , where , 
∂ see [16, eq. (1.6)]. 

 

 (a) (b) 

 

 (c) (d) 

Figure 1.2: Examples of types of incident field solvable in this chapter, with wavenumber 
k = 40 (although the wavenumber is irrelevant for (a) and (c)). (a) Plane wave. (b) 
Herglotz-type wave with kernel gHerg= −e−iℓθ

/(2π). (c) Point source. (d) Beam source (see 

Definition 1.5) with Ȗ = {(x1,x2) אR2 : x1 [1/2,1/2−] א,x2 = 0} and .As 
promised in Remark , we will generalise the definition of M(u) to problems where the 
incident field is unbounded at points inside the scattering domain Ω+. This definition will 
continue to depend on the size of u in some sense. We will conclude this introduction 
with a theorem which will be used in each problem considered in this chapter, and the 
multiple scattering problems. This theorem will enable us to bound the scattered field us in 
terms of the k-weighted norm of the incident field uincon the boundary ∂Ω. 
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THEOREM 1.1. For an obstacle Ω− with boundary ∂Ω and incident field u
inc

(in the 

sense of Definition 1.1), we have the following bounds on the corresponding scattered 

field u
s = u − uinc

, where u is the solution to (1.4)–(1.6):For star-shaped polygonal Ω− with 

boundary Γ = ∂Ω, 

 2diam(Ω  , 

where, 

xאΓ 

where nΓis the number of sides of Γ, whilst L∗denotes the length of the longest side and 

ȖE≈ 0.577 denotes the Euler constant. 

(i) More generally, for a non-trapping polygon Ω− with boundary ∂Ω, given k0 >0, 

 kuskL∞(Ω+) .k−1/2 log1/2(k)kuinckHk1(∂Ω), for k≥ k0. 

(Recall that a .b is equivalent to a ≤ cb, where c depends only on the geometry of Ω−.) 

Proof. (i) We have the illustrationu
s = −SkA

−
k 

1
fk in Ω+ (follows immediately from (1.10)), 

where Akand fkareAsu
incאC

∞(N) by, it follows that uincאH
1(Γ). Hence by the definition of 

fk, kfkkL2(Γ) ≤ diam(Ω−)k׏u
inckL2(Γ) + k(diam(Ω−) + 1/2)ku

inckL2(Γ) 

 2diam(Ω  . (1.3) 

The result follows by combining (1.3) with the bound on Skof [35, Lemma 4.1] and the 
bound on A−

k 
1 of [35, (4.5)] (noting that our definition of Akis twice that of Akin [52], as 

warned by Remark 1.5) with the bound 

 . (1.4) 

(ii) In rapports of the Dirichlet to Neumann map, we may ponder the BVP with Dirichlet 

data us = −u
incon the boundary ∂Ω, hence inc. We consequently have 

the illustration 

 inc
, in Ω+, 

which we can bound 

. 

We have that kSkkL2(∂Ω) .k
−1/2 log1/2 

k from [35, Lemma 4.1] provided we choose k0 ≥ 
max{2L∗,2/L∗}, also k0 must be chosen such that this proves the assertion. In the overhead 
Theorem 1.1, the bound (i) is a special case of the more general bound (ii), choosing√ k0 = 
max{2L∗,2/L∗} and k-independent constant c = C1[2diam(Ω−)+2. In this chapter, we 

C 1 = 

p 
5 n Γ / (8 log 2)[1+(2 /π )(1 − γ E + e 1 / 4 )] 

essinf ( x · n ( x )) 
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consider only convex polygons (a sub-class of star-shaped polygons, so all results 
concerning star-shaped obstacles hold), however Theorem 1.1(ii) is a general result which 
will also apply to multiple obstacles in  non-convex obstacles. 

 

HERGLOTZ-TYPE PREVALENCE: 

First, we extend the well-studied case of plane wave occurrence to a weighted 
vital of plane waves. From the point of view of the mathematical analysis, this is the 
simplest case we consider, as flatnesspossessions are inherited from the single plane wave 
case.We aim to solve the problem for a single convex polygon Ω− with boundary Γ = ∂Ω, 
where the occurrence field is a Herglotz-type function (in the sense of Definition 1.8), for 
which the Herglotz kernel gHergאL

2(0,2π) is known, henceforth 

  for x אR2
, 

where dθ:= (cosθ,−sinθ). We shall typically not stipulate the second argument (the 

Herglotz kernel) of ), and instead write u
inc

Herg(x). We now separate the 

leading order behaviour (reflected terms) of , by piercing the incident wave 
u

inc
Herginto incoming and outgoing waves relative to the half-plane Uj, to obtain a 

representation of the form (1.2). To do this, we require  

and   .  
We may now split the incident wave into plane waves divided over these sets, and 

use the illustration (1.1) on to obtain for x in Uj 

 

 

Figure 1.3: Example of the two types of waves split over the vital. Dashed arrows are 

those in , regular arrows are in . 

. 
(1.5) We cannot use the representation (1.1) over Zj

Ļ, instead we may consider 

 ur(x) = −Z Ļ gHerg(θ)eikx˜j·dθdθ, x in Uj,Zj 

n j U j 

R 
2 \ U j 
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the integral of images of plane waves reflected in the line Γ∞
j(see Figure 1.3). As this 

consists only of incident waves which are outgoing relative to x˜j, we can use the 
representation (1.1) with v = us to obtain 

 , x in Uj, (1.6) 

where y˜jhas been replaced by yj, as y = y˜jon Γ∞
j. Summing (1.5), (1.6) and (1.1) with v = 

u
s yields 

,xin Uj, (1.7) 

finally taking the Neumann trace gives the representation (1.2) 

 ∂,xin Γj, (1.8) 

where 

 ΨHerg(x) = 2ik Z Ļ[nj·  dθ]gHerg(θ)eikx·dθdθ, x in Γj.Zj 

We note that the representation (1.8) appears identical to (1.2), the key difference being 
the definition of Ψ = ΨHerg. 

THEOREM 1.2. Suppose that the incident field is a Herglotz-type function  (in the 

sense of Definition 1.8), and Ω− is a convex polygon. It follows that Assumption 

holds, with 

M(u) = M∞(u) := sup |u(x)|, 

xאΩ+ 

hence the functions , are analytic in the right half-plane Re[s] >0, where 

they satisfy the bounds 

 

where δj
+,δj

are given by δj (0,1/2) א −
+ := 1 − π/ωjand δj

− := 1 − π/ωj+1. The constant Cj
+ 

depends only on c∗, and ωj, whilst the constant Cj
− 

depends only on c∗, and ωj+1. Here the 

constants c∗ωjare as in Definition 2.1. 

Proof. Given the boundary representation (1.8), [35, Theorem 1.1] describing the 
behaviour close to the corners holds for Herglotz-type functions, and the assertion follows 
by exactly the same arguments as [35, Theorem 1.2].  

The estimates above can be rewritten in terms of known parameters using the following 
bound. 

COROLLARY 1.1.Suppose that u
inc

Hergand Ω− are as in Theorem 1.2. Given the 
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Herglotz kernel gHergאL
2(0,2π) of u

inc
Hergwe have the following bound 

2diam(Ω  , 

where C1 and L∗are as in Theorem 1.1. Hence, if there exists a ȕ′ 
>0 such that 

kgHergkL2(0,2π) .k
ȕ′
, Assumption  holds. 

Proof. The bound onM∞(u) follows by writing 

  (1.9) 

and noting by it follows that  , hence we may 

use Theorem 1.1 to bound  of (1.9), with √2πkgHergkL2(0,2π), 
which again follows. Through Theorem 1.2 and Corollary (1.3), we have shown that 
both components of Assumption hold, exponential convergence of the Galerkin method 
for Herglotz-type incidence is guaranteed. We do not present numerical experiments for 
problems of Herglotz-type incidence here.Although the theory was initially developed to 
integrate HNA methods with the T-matrix method of , we will develop a more efficient 
method in which serves the same purpose, using the theory developed in. To implement 

the theory of this section, one may apply the method  to approximate , noting that if 
we choose A = Akthen fully explicit error estimates follow from  on any N-dimensional 
subspace VN

HNA(Γ), by Corollary 1.1. 
 
SOURCE-TYPE PREVALENCE: 

In this section, we tend to aim to generalise the HNA technique to cases that the 
incident field uinc6אC

∞(R2). Naturally, some regularity is needed for the HNA technique 
to figure. we tend to aim to contain the less regular regions of the incident field, for 
instance a degree at that the incident field is boundless, within a group that's sufficiently 
faraway from the scatterer Ω− specified Assumption holds, and so the HNA technique 
still converges at associate degree exponential rate. we tend to denote by Z a group within 
that this less regular behaviour is contained. Previous analyses of the HNA technique 
utilized the finitude of u once bounding the diffracted waves  it follows from (1.2) that v± 

may be written as integrals along the extended line Γ±
j. The idea is to take M∞(u) outside 

of the integral using H¨older’s inequality with ) and ). However, we'll 
demonstrate here that if there exists a delimited open Z א R2 outside of that uinc is sleek, 
it's sufficient  onfor uincto be L2 integrable on Γ±

j∩ Z, while Theorem 1.1 provides a sure 
on ku

skΓ±j. To ensure uincsatisfies these conditions, we tend to outline the line 

  , for c אR and θ 0] א,π). (1.10) 

We will make use of the following norm, which considers the trace on the intersection of 
such lines with Z, for a function w 
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 , for ǫ >0,(1.11) 
where τℓc,θdenotes the trace operator mapping to the line ℓc,θ. Given that w אH

1/2+ǫ(Z) we 
know that w is continuous across ℓc,θ, hence the trace is the same regardless of the 
direction in which it is taken. Figure 1.4 depicts the type of lines considered, for a set Z. 

 

Figure 1.4: A finite set of lines intersecting some shaded region Z. The L(Z) norm 
considers the infinite set of all such lines, and bounds above the L

2 norm of a function 
restricted to any such straight line. 

The following Theorem bounds the L
2(ℓc,θ∩Z) norm uniformly for any c אR,θ0] א,π). 

This is useful given that our definition of M(u) for source-type incidence will contain the 
L(Z) norm. 

THEOREM 1.4. If u
inc|ZאH

s(Z) for s (1/2,3/2) א, where Z is a finite union of convex 

bounded sets open in R2
, then 

kuinckL(Z) ≤ CτkuinckHs(Z),where Cτ>0 depends only on Z.Proof. Initially we consider 
the case for Z convex. We consider a line ℓc,θwhich intersects Z, and consider the two 
(also convex) sets formed via the bisection of the set Z by ℓc,θ. Denote by one of these two 
sets Zˆ, chosen to be the set inside of which the largest ball can be constructed, and 
assume for now that diam(Zˆ) = 1. Denote by ∂Zˆ the boundary of Zˆ. It follows by [36, 
Lemma 4.4] that 

  , for w אH
s(Z), 

where Cˆτdepends on Zˆ and | ·  |Ws(Zˆ) denotes the Sobolev–Slobodeckij semi-norm, order s 

over Zˆ (see e.g. [42, p74] for a definition). As ℓc,θ∩ Z ⊂∂Zˆ, and Zˆ ⊂Z we have 

 , for w אH
s(Z). 

Given the conditions of [36, Lemma 4.4], we may choose Cˆτto be the constant 
corresponding to the ℓc,θwhich minimises the radius of the largest open ball that can be 
constructed inside of the set Zˆ. Given Z, this choice will produce the maximal value of 
Cˆτ. Combining this maximal constant with the equivalence of the Sobolev– 
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Slobodeckij and Bessel potential norms (see , Theorem 1.30(ii)) we may writekwk2L(Z) 

≤ Cτkwk2Hs(Z),for w אHs(Z),where Cτdepends only on Z. Repeated applications of the 
above steps extend this result to finite unions of convex sets. Likewise, scaling arguments 
can be used for the case diam(Zˆ) = 1.6Now we may define the space of source-type 
incident waves which we will solve via the HNA method. 

DEFINITION 1.5 (Source-type incidence). Given a bounded open Z ⊂R2 
such that 

dist(Z,Ω+) ≥ 1/k, we define the set of source-type incidences as 

, for s >1/2, ϕ|R2\Z אC
∞(R2\Z)}. 

The above definition takes into consideration the result of Theorem 1.4; by 
restricting to ϕ|ZאH

s(Z) this ensures that kϕkL(Z) <∞ for all functions in the space. We 
note also that classical C∞(R2) incidences, for example plane or Herglotz-type waves, are 
accommodated by the above definition, in which case Z may be chosen to be empty. 
Intuitively, the set Z can be thought of as the region in which the incident wave may be less 
regular, and all weakly singular behaviour should be strictly inside of Z. Given that we still 
have smoothness inside a neighbourhood of Γ, we can obtain the required bounds on |v±|  
for a carefully chosen M(u). 

FOREMOSTDIRECTIVE BEHAVIOUR FOR SCATTERING BY POINT AND 

BEAM SOURCEPREVALENCE: 
We currently limit our attention to a selected category of source-type incident 

fields, in order that the leading order behaviour is separated, as is needed to represent the 
answer within the type (1.2) 

DEFINITION 1.6 (Localised source). The localised source u
incאHsrc(Ω+,Z) is 

defined as u
inc(x) = hϕ,˜ Φ(x,·)i, for x אR2 \ Z, 

where ϕ˜ is a distribution, and the values of Z for which x is defined depends on the 

particular choice of ϕ˜, as discussed in Remark 1.7 below. We are interested in two 

particular cases: 

(i) The point source emanating from s אZ, corresponding to ϕ˜ = δs, where δsis the 

Dirac Delta function translated to s, for which 

 u
inc(x) = uinc

PS(x;s) := Φ(x,s), for x אR2 \ {s}. 

(ii) The beam source emanating from a Lipschitz curve Ȗ of Hausdorff dimension one, 
with density ϕ אL

2(Ȗ), 

 u
inc(x) = uinc

BS(x;ϕ) := Z Φ(x,y)ϕ(y)ds(y), for x אR2.Ȗ 
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See Figure 1.6 for examples of typical Z for source type waves. Hereafter we shall often 
make the second arguments s and ϕ of u

inc
PSand u

inc
BSimplicit, writing u

inc
PS(x) and 

u
inc

BS(x) instead. 

REMARK 1.7 (Dependence on regularity of ˜ϕ). We now explain in more detail the 

values of x אZ for which u
inc(x) is defined, given ϕ˜, noting the regularity of the 

fundamental solution, 

 Φ(x,·) אH
1−ǫ(R2), for all ǫ >0, for all x אR2

. (1.12) 

(As we could not locate a derivation of the regularity (1.12) in the literature, we present 

an argument in Appendix A.4.) Given that the inner product is well defined between any 

space and its dual, it follows from (1.12) that u
inc(x) = hϕ,˜ Φ(x,·)iis defined for all x אZ 

(and therefore all x אR2
) if ϕ˜ אH

−1+ǫ(R2), as is the case for the beam source of Definition 

1.6(ii). However, this is not the case for the point source, as we have taken the less 

regular ϕ˜ = δsאH
−1−ǫ(Z) ∩ (C(Z))∗, for s אZ and ǫ >0, yielding Φ(x,s), for which x is 

undefined at s. However, for the point source case, it follows from (1.12) that Φ(·,s) אH
s(R2) for s (1/2,1) א, hence by Definition 1.5 we have that Φ(·,s) אHsrc(Ω+;Z) for s in a 

suitable Z containing s.This is sufficient to prove the bounds on |v±|, as required ,Now we 

derive a representation for  which explicitly separates the leading order (reflected) 
terms in terms of known components of uinc, for the case of the beam source and the point 
source. The general rule is that if the side Γjcan see the source, then the leading order term 

Ψ is equal to 2 inc, otherwise it is equal to zero. 

THEOREM 1.8. For a point source incidence u
inc= u

inc
PS(as in Definition 1.6(i)), the 

leading order behaviour of (1.2) is 

 2∂+Φ(x,s), s אUj, א 

 0, otherwise, for x Γj, (1.13) 

where Ujdenotes the upper half plane relative to  (as defined at the start of this 

Chapter, depicted in Figure 1.1). 

Proof. Define the half-plane Dirichlet Green’s function 

 Gj(x,y) := Φ(x,y) − Φ(xej
,y), x =6 y, 

where xjis the reflection of x in the line Γ∞
j, as defined at the beginning of this chapter. 

We split into three cases, depending on the position of the source pointes: 

(i) For s in Uj, we apply Green’s second identity to u
inc

PSand Gj(x,·) in Uj∩BR(0)∩ 
Bǫ(s), where BR is a ball chosen sufficiently large that Γjand Bǫ(s) are inside it, for ǫ 

>0. Taking the limit as ǫ ĺ 0 and R ĺ ∞ yields the result 
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 , x אUj. (1.14) 

Taking the Neumann trace gives the result 

 , x אΓj, (1.15) 

as claimed. 

(ii) For s אΓ∞
j, the same approach as (i) holds, although the factor of 2 in (1.14) is 

replaced by a 1, as only half of the ǫ-ball is in Uj. This makes no difference 
however, as ∂n + Φ(x,s) = 0 for s אΓ∞

j, so the leading order term Ψ is zero in this 
case. 

(iii) For a source in the relative lower-half plane, s אR2 \Uj, the representation (1.1) may 
be used, as uinc

PSis smooth in the upper half plane Uj, hence 

 , x אUj, 

and taking the Neumann trace yields 

, 

 

Figure 1.5: Depiction of the imaging argument used in the proof of Theorem 1.9. Here 
Ȗa:= Ȗ ∩ Uj, Ȗb:= Ȗ \ Ujand Ȗr:= {x˜jאR2 : x אȖa}. Physically, Ȗrcorresponds to the reflection 
of Ȗain the line Ȗj

∞ := Γ−
j ∪Γj∪Γ+

j. The wave ua
incemanates from Ȗa, u

inc
bemanates from Ȗb, 

and may be interpreted as a wave emanating from Ȗr(although it is formulated 
differently in (1.20)). 

Combining each case, summing with the representation (1.19) of the Neumann trace of 
the scattered field us yields 

∂u 
 ∂ n , x אΓj, 

Γ j Γ 
− 
j Γ 

+ 
j 

U j 

R 
2 \ U j 

γ a 

γ b γ r 
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as claimed  

THEOREM 1.9. For a beam source incidence u
inc= u

inc
BSwith density ϕ אL

2(Ȗ) (as in 

Definition 1.6(ii)), the leading order behaviour of (1.2) is 

 , for x אΓj. (1.16) 

Proof. We will use a method of images style argument (depicted in Figure 1.5). We split 
u

inc
BSinto two components, corresponding to the contribution to the intensity at x from the 

components of the incident field above and below the extended line Γ∞
j,u

inc
a(x) 

:=Φ(x,y)ϕ(y)ds(y), and uinc
b(x) := Z Φ(x,y)ϕ(y)ds(y),Ȗ∩UjȖ\Uj 

(1.17) 
 

u
inc= uinc

a+u
inc

b. Given that uinc
b|UjאC

2(Uj)∩C(Uj), we can apply (1.1) noting that 
to obtain the representation 

 u
inc

b , x אUj. (1.18) 
We note that the same representation holds for us, hence 

 , x אUj. (1.19) 

For ϕ אL
2(Ȗ), it follows from [13, Theorem 2.15] that  

C(Uj), hence we cannot apply (1.1). Instead we make use of  C
2(Uj) ∩ 

), which physically corresponds to the reflection of  in 
the extended line Γ∞

j(See Figure 1.5). Applying (1.1) yields 

 

for x אUj. We may now add both sides of (1.20) to u = uinc+ us, and split the 

incident field uinc= uinc
a+ uinc

b to obtain 

{, x אUj. 

Substituting the representation for uinc
a of (1.17) and (1.19), we obtain 

Z 
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 , x אUj. 

Taking the Neumann trace to Γjyields 

∂  

  , x אΓj, 

as claimed.  

The definition of Ψ for purposesome extent degree supply is also simply extended to 
multiple point sources by taking a linear combination of the leading orderby taking a 
linear combination of the leading order behaviour for every individual point source. 
Recalling that the beam supply could become a helpful construct in unvaried  multiple 
scattering ways, we tend to remark that the case of a a lot of general density densityϕ אH

−1/2(Ȗ) should be understood for associate unvaried  resolution of a configuration of 
multiple screens, as this can be the answer area of the screen downside. we tend to 
speculate that an analogous result holds in such a case, but one should watch out once 
ripping the beam supply into u

inc= u
inc

a+ u
inc

b ,because the integral currently should be 
understood within the sense of distributions. 
We will see that the leading order for beam supply incidence is closely associated with 
our multiple scattering operator; the key distinction is that ϕ becomes associate unknown 
density within the multiple scattering case. 

 

Figure 1.6: Example of components used for half-plane representation, in which the 
shaded region(s) denote(s) the choice of Z. This diagram may be used to explain the point 

Γ j 

Γ 
+ 
j 

U j 

Γ 
− 
j 

Ω − 

n 

γ 

s 

∂B R 
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source (at s) or beam source (at Ȗ) case, or the incident wave corresponding to the 
combination of both. 

REGULARITY OF V± FOR SOURCE-TYPE TERMS: 

In the previous subsection we separated the leading order behaviour for a large class 
of source-type incidences, of the form stated in Definition 1.6. We now relax further, to the 
entire space Hsrc(Ω+;Z), inside of which we prove the required bounds on the diffracted 
waves. 

THEOREM 1.10. For incident field u
inc

, if there exists Z such that u
incאHsrc(Ω+;Z) (as in 

Definition 1.5), then Assumption 2.4 holds with M(u) = MZ(u), that is 

 . (1.21) 

Hence the functions vj
±
, for j = 1,...,nΓ, are analytic in the right half-plane Re[s] > 

0, where they satisfy the bounds 

 

where δj
+,δj

are given by δj (0,1/2) א −
+ := 1 − π/ωjand δj

− := 1 − π/ωj+1. Theconstant Cj
+ 

depends only on c∗, and ωj, whilst the constant Cj
− 

depends only on c∗, and ωj+1. 

Proof. The analyticity of the functions ) in Re[s] >0 follows from the analyticity of 
µ(s) in the same set, which is shown in [35, Lemma 1.4]. 

Firstly we deal with the case of |s| >1/k. It follows that k(s + t) >1, hence the bound [35, 
(1.7)] can be simplified and 
we may write 

(1.22) (1.23) 
 
We now splitthe 
integral, separating the set Z

′ ⊂ (1/k,∞) containing all t such אZ. It follows that that yj(L˜j−1 − t) 
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+Since |s| >1 

 

and 

, 

hence by the Cauchy-Schwarz inequality 

 |vj
+(s)| ≤ MZ(u)k|ks|−1/2 for . 

For |s| ≤ 1/k, the definition of vj
+ gives 

 
As (0,1/k) 6⊂Z

′, it follows from the Definition of Hsrc(Ω+;Z) that u
incis infinitely 

differentiable in this region, and satisfies [35, Lemma 1.5], hence 

 u(x) ≤ CkukL∞(Ω+\Z)(k|x|)π/ωj
,for |x| <1/k,for C independent of k, 

andu(x) ≤ CMZ(u)(k|x|)π/ωj
, for |x| <1/k. The first integral is bounded as in the proof of [35, 

Theorem 1.2], hence 

 

whilst the second fundamental is bounded as in the case |s| >1/k. Coalescing all bounds 
proves the declaration.Provided that MZ(u) has only numerical growth in k, the conditions 
are satisfied, and a hpmethod as describedconverges exponentially. We note again that up 
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to this point, the case uincאC
∞(R2) also fits inside of this framework, by choosing Z empty. 

We now seek fully unambiguous bounds on MZ(u) for the case of point source incidence. 
 
THEOREM 1.11. For point source incidence u

inc= uinc
PS(·;s) with dist(s,Γ) >1/k, it 

follows that u
inc

PSאHsrc(Ω+;Z) (of Definition 1.5) with Z = Br(s) and r = min(1,1/(2k)), 
moreover we have a k-explicit bound on the constant of Theorem 1.10 

2diam(Ω  , 

where C1 and L∗are the constants from Theorem 1.1, and 

. 

 
Proof. Noting the definition (1.21) of MZ(u), we bound each of the three components 
separately. 

(i) The bound on 

 

follows immediately from (A.7); given the monotonicity of the absolute value of Hankel 
functions, the maximal value will occur at the boundary of Z. 

(ii) Secondly we prove the bound on ku
skL∞(Ω+). By Definition A.4 of the Hk

1 

norm, we have 

 , 

which we can bound using (a + b)1/2 ≤ a + b for a and b non-negative, hence 

 . 

 Given the definition of Φ, and that 0, using 
(A.7) and (A.8) to bound these yields 

 . 

Combining with Theorem 1.1, we obtain 
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 2diam(Ω  ! 

(iii) Thirdly we prove the bound on ku
inc

PSkL(Z). We choose ℓ∗to be a line of the 
form (1.10) containing s; given the monotonicity of |Φ(·,s)|, this line will 
maximise the norm. By definition of Φ and the L2 norm, 

Using (A.10) we can write  

 

, 

hence 

. 

Noting the definition (1.21), it follows from (i) and (iii) that 

, 

the result follows, with (ii) contributing the k-dependent components of the bound. 
Now we prove a similar result for the beam source case. 

THEOREM 1.12. Suppose u
inc

BSis a beam source incidence (in the sense of 

Definition 1.6(ii)) with density ϕ אL
2(Ȗ), emanating from Ȗ with dist(Ȗ,Ω+) ≥ 1/k. If 

M(u) = MZ(u) where Z is a bounded open neighbourhood containing Ȗ, or if M(u) = 
M∞(u), then given k0 >0 we have the bound 

 M(u) .log1/2(k)kϕkL2(Ȗ), for k≥ k0. 

Hence if there exists a ȕ′ 
>0 such that kϕkL2(Ȗ) .k

ȕ′
, then Assumption 2.4(ii) holds. 

Proof. Noting the Definition (1.21) of MZ(u), we bound each of the three components 
separately. 

(i) Firstly, the bound on ku
inc

BSkL∞(Ω+\Z), 

ds(y) 

and using (A.7) we can bound 
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, 

from which it follows that 

 kuincBSkL∞(Ω+\Z) .k−1/2kϕkL2(Ȗ). (1.25) 

(ii) Secondly, the bound on ku
skL∞(Ω+). We start by rewriting the k-weighted norm 

. 

We may bound further using Lemma 5.14(i) and (ii), to obtain 

kuincBSkHk1(Ω+) .(k1/2 + 1)kϕkL2(Ȗ), 

which when combined with Theorem 1.1(ii) yields 

 ku
skL∞(Ω+) .log1/2 

kkϕkL2(Ȗ), (1.26) 

for k ≥ k0. 

(iii) Thirdly, the bound on kuincBSkL(Z). Using the definition (1.11) of the L(Z) norm, 
we may write 

 

using the bound on the Hankel function (A.7) once more. It then follows by [7, Lemma 
1.2(a)] that 

 kuincBSkL(Z) .k−1/2kϕkL2(Ȗ). (1.27) 

Combining (1.25)-(1.27) with the definition (1.21) yields the result for MZ(u). The 
result for M∞(u) follows by taking the limit as the region Z shrinks towards a set of 
measure zero.  

We note that Theorems 1.11 and 1.12 imply M(u) = MZ(u) .log1/2 
k for sufficiently 

large k, which is sharper in its k-dependence than the plane wave case of Remark  for 
which the corresponding bound is M(u) = M∞(u) . k1/2 log1/2 

k. It should be noted that 
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this bound is not believed to be sharp, as numerical experiments suggest M(u) = O(1) 
for for plane wave incidence (see [35, §6]). These theorems, coupled with Theorem 
1.10 show that Assumption holds for the point source and beam source incidence, 
therefore exponential convergence of the HNA method. 
 
ALGEBRAICEXPERIMENTATIONS FOR THE POINT SOURCE: 

We now establish via numerical examples the effectiveness of the Hybrid 
Numerical Asymptotic method for the point source problem. Specifically we consider 
the problems where Ω− is an equilateral triangle (nΓ= 3) with Lj= 2π for j = 1,...,nΓ, 
with incident field uinc

PS(x;s) for a range of s which will be introduced shortly. Figure 
1.10 plots the approximation u to both problems, whilst Figure 1.12 plots the 
boundary solution νpof for the triangle and regular pentagon (nΓ= 5). In both cases the 
absolute value of the boundary solution is largest at the point of the boundary which is 
closest to the source. This is largely accounted for by the geometrical optics 
component ΨPS.We solve using the classical combined formulation using the Galerkin 

method outlined on a single mesh, hence we seek vNא (Γ) such that 

  , for all , (1.28) 

where ΨPS is as in (1.13). For the mesh parameters. we introduce some polynomial 
dependence on αj , choosing αj = min((1 + (pj)i)/8,2), where icorresponds to the ith 
mesh element on the jth side. The result of Theorem  still holds, given that αj is 
bounded above by a constant independent of the polynomial degree. We choose cj= 2, 
and we choose the polynomial degree vectors pjin accordance with Remark. We 
compute all inner products in the Galerkin method using the quadrature routines 
discussed in Appendix B. We note also that the set Z discussed throughout this section 
is not a parameter of the numerical method; we require only that such a Z exists. 
Convergence analysis was run for k {5,10,20,40,80,160} א with p {7,...,1} א, taking p 

= 8 as the reference solution. The approximation was also validated by means of 
comparison against a standard BEM solution, we do not give these results here. For 
the triangle, the vertices are 

P  , 

whilst the point sources we consider are emanating from 

s  . 

Figures 1.8 and 1.9 show the convergence of the HNA Galerkin method for each of the 
three cases for the triangle, which are depicted in Figure (1.7). In each case 
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Figure 1.7: Schematic of triangular scatterer Ω− with position of each source point 

 
p 

Figure 1.8: Relative L2(Γ) errors for the triangle, for source point s1. 

Figure 1.9: Relative L
2(Γ) errors for the 

s 2 

s 1 

s 3 

Γ + 
2 
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triangle, for source point s2 and s1. 
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Figure 1.10: Real part of uNfor p = 8 in Ω+ for the regular triangle and the pentagon, 
with wavenumber k = 20. The source point s is covered by a set Z = B1/k(s) inside 
which we do not evaluate u. This was done for aesthetic reasons; the colourbar scale 
would be skewed for large values of Φ(x,s), when x is close to s. 
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we observe similar rates of exponential convergence. Moreover, for fixed pthe 
error does not increase with k, indeed it can be seen to decrease, which demonstrates 
the frequency independence of our approach. For a source point s1, we observe the 
lowest relative errors, which can be explained as the source is furthest away from Ω− 

inthis case. Theorem (1.11) suggests that MZ(u) of (1.21) grows with 1/pdist(s,Ω−). 
The point s2 is closer to Ω− than s1, with distance |s2 − P1| ≈ 0.372, for which the rate of 
convergence appears to be shifted by a multiplicative constant which further justifies 
the hypothesis that convergence is weaker for source point closer to Γ. The point s3 

was chosen to lie on the extended line Γ+
2 , such that the integrand of (1.2) is 

unbounded, as the path of integration contains a singularity. This confirms the 
theoretical result that the HNA method will converge exponentially, even if the 
solution u is unbounded on the extended line (as previous analyses of HNA methods 
would not explain this). The method can be seen to converge similarly for s3, which is 
to be expected given the distance is |s3 −P3| ≈ 0.858, s3 is a similar distance fromΩ− as 
s2.Figure 1.11 shows how the conditioning of the discrete system grows with p and k. 
Recall from that the conditioning of the discrete system depends closely on the choice 
of αj, which here is chosen to be min((1+(pj)i)/8,2). It is difficult to determine trends 
in the conditioning from this plot, for lower wavenumbers k = 5,20,40 the 
conditioning appears to peak, and then drop for higher p. If poor conditioning causes 
the system to become unstable, a larger value of αj should be chosen, removing 
unnecessary basis elements. This can be done without computation of any further 
inner products; carefully selected rows and columns from the discrete system can be 
removed to achieve this.Implementation of the beam source problem follows 
similarly, although we do not present any results here. In such a case, the right hand 
side will contain a triple integral (AΨBS,φ)L2(Γ) for basis function φ, as in this instance 
ΨBS itself contains an integral. 

 
CONCLUSIONS AND FURTHER WORK: 

In this paper we have developed theory that proves the HNA method 
converges exponentially for Herglotz-type, point and beam source incidence. This was 
demonstrated by numerical examples for the case of the point source.A key 
development for future work is to generalise the density of the beam source term to 
H

−1/2(Ȗ), rather than H
−1/2+ǫ(Ȗ) for ǫ >0 that has been explored here. This would be 

essential for analysis of iterative HNA methods for multiple screen 
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P 

Figure 1.11: Plot of condition number of Galerkin matrices against k and p, for the triangle 
problem. 
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(b)Figure 1.12: Plot of real part of boundary solution, for the problems depicted in 
Figure 1.10 (a) and (b).problems, which we plan to address in future work. 
Alternatively, the methods in this paper may be combined with non-convex polygons 
ofthe penetrable obstacles. 
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